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Highlights 

• Fluoride and arsenic dissipation in the groundwater in Sri Lanka is reviewed. 

• Groundwater in dry regions show elevated fluoride levels causing dental and skeletal 

fluorosis 

• Introducing a household level defluoridating method is required for the high fluoride 

regions. 

• Naturally occurring groundwater with high As (>10μg/L) is recorded in sedimentary 

aquifers. 

 

 

 

 

 

 



ABSTRACT 

Fluoride and arsenic in groundwater are two of the most discussed elements in the 

emerging science “Medical Geology”.  This paper reviews the studies conducted during the 

last 30 years in Sri Lanka on fluoride and arsenic in groundwater. These studies have 

clearly indicated that several regions of the dry zone of Sri Lanka are   affected by excessive 

quantities of fluoride in the groundwater. Apart from the well-known dental fluorosis, 

skeletal fluorosis was also reported up to a certain extent in the high fluoride regions. The 

recent increase in the incidence of chronic kidney disease of unknown etiology (CKDu) has 

also highlighted the importance of the geochemistry of fluoride in groundwater of the dry 

zone. Although geologically, the dry zone of Sri Lanka does not differ markedly from the 

wet zone, the climate and the hydrological conditions play a significant role in the 

geochemistry of fluoride and its impact on human health. Over 50% of wells in the dry zone 

regions of Sri Lanka have fluoride levels higher than 1.0 mg/L while the fluoride content is 

also higher in deep wells compared to the shallow wells. Arsenic in groundwater is not yet 

considered as a serious issue in Sri Lanka, particularly in aquifers in the metamorphic 

terrain, but higher arsenic levels were recorded in sedimentary terrains. The toxicity 

effects of high arsenic in such terrains still remain a neglected health concern that needs 

greater attention. Since high fluoride is a major problem in the dry zone regions with 

severe health concerns, suitable defluoridation methods need to be introduced at the 

household level.  

 

Keywords:  CKDu; dental fluorosis; skeletal fluorosis; dry zone; sedimentary aquifers, 
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INTRODUCTION 

The relationships between the natural environmental factors and the health of the 

inhabitants in a terrain have been known for centuries. Exposure, either to lower or higher 

levels of certain chemical constituents through drinking water, food or air leads to 

numerous non-communicable diseases. The science dealing with the relationship between 

natural geological factors and health of man and animals, now defined as “Medical Geology” 

describes the influence of ordinary environmental factors on the geographical distribution 

of health problems (Dissanayake and Chandrajith, 1999; Finkelman et al., 2018; Finkelman 

et al., 2001; Selinus, 2002). Such health issues are more apparent in the tropical equatorial 

belt, where the vast majority of countries are less developed, compounded by economic, 

health, agricultural and many other issues. Geogenic and climatic factors are also unique in 

these terrains and are further compounded by the fact that their human populations are 

exceedingly high. Tropical countries are very often subject to a variety of geogenic 

disasters, including problems relevant to water quality and health issues (Bundschuh et al., 

2017). In such terrains, water stress and water quality issues are more severe and expected 

to increase in the near future with the predicted climate change impacts (Kundzewicz et al., 

2008). Providing safe water to the community is one of the important considerations in the 

Sustainable Development Goals (SDGs), and  assessing water quality is therefore , an 

important consideration in providing potable water for the community (Alcamo, 2019; 

Bundschuh et al., 2017; Li and Wu, 2019; Yunus et al., 2019), Most importantly in these 

terrains, groundwater is very often used as drinking water directly with no purification, 

and the link between groundwater chemistry and health becomes obvious.  Therefore, from 

a medical geology perspective, groundwater geochemistry is of special importance.  

  

The groundwater derives its solutes from contact with various solids, liquids, and gases as 

it finds its way from the recharge to the discharge area. The chemical composition of the 

rocks, minerals, and soils through which the groundwater flows causes very large 

variations in the geochemistry of the groundwater (Dissanayake and Chandrajith, 1999; 

Finkelman et al., 2018). In most developing countries in the tropical equatorial belt, 

contamination of water due to industrial emissions are minimal and the chemistry of the 



rocks, minerals, and soils of a terrain is of paramount importance for the geochemistry of 

groundwater and hence the health of the indigenous populations. The anomalous levels of 

certain dissolved constituents would undoubtedly impact the health of the people living in 

an area.  

 

Since the quality of drinking water has a clear impact on public health, the World Health 

Organization (WHO) imposed guidelines and standards for many of these constituents 

including elements and other harmful substances. One of the important aspects of the 

essentiality of elemental constituents is the margin between individual and population 

requirements and the tolerable intake. Developing countries with their different lifestyle 

patterns and inadequate nutritional supplements coupled with a host of natural and 

anthropogenic environmental problems may have markedly different tolerable intakes as 

compared to those living in developed and temperate countries. Therefore, the relationship 

between water quality and human health is more apparent in developing countries where 

centralized water supply systems are not available (Dissanayake and Chandrajith, 2007; Li 

and Wu, 2019). In developed countries where centralized water supply systems are freely 

available, water quality can be regulated and monitored, and proper standards are 

maintained.   

  

From among many other relationships between geochemistry of human health, the link 

between fluoride and arsenic geochemistry of drinking water in an area and incidences of 

health effects are very well-established in medical geology. During the last few decades, 

several studies had been carried out throughout the world to investigate the geochemical 

relationship of fluoride and arsenic and the health of populations. The aim of this paper is 

to review some recent studies on the geochemistry of fluoride and arsenic in groundwater 

and their health impacts, giving particular emphasis to the tropical terrain of Sri Lanka.  

 

 

 



FLUORIDE AND HUMAN HEALTH 

 

Fluoride in drinking water becomes a serious problem globally, since nearly 200 million 

people, mostly from tropical countries, are vulnerable to dental and/or skeletal fluorosis 

(Figure 1)(Kimambo et al., 2019). Fluoride related health issues were noted in many 

counties like China (Guo et al., 2014; Wen et al., 2013), India (Ali et al., 2019; Jacks et al., 

2005; Reddy et al., 2010; Saxena and Ahmed, 2003; Yadav et al., 2019); Pakistan (Rafique et 

al., 2009; Rasool et al., 2018); eastern African countries  (Davies, 2003; Gaciri and Davies, 

1993; Kut et al., 2016), Sri Lanka (Balasooriya et al., 2019; Chandrajith et al., 2012; 

Dissanayake, 1991, 2005; Ranasinghe et al., 2019; Wickramarathna et al., 2017), Mexico 

(Armienta and Segovia, 2008; Daesslé et al., 2009; Valenzuela-Vasquez et al., 2006); 

Argentina (Gomez et al., 2019; Gomez et al., 2009; Kruse and Ainchil, 2003) among others, 

have very high incidences of dental and in many cases skeletal fluorosis mainly caused by 

the excess fluoride in drinking water  (Ali et al., 2019; Dissanayake, 1991, 1996; Edmunds 

and Smedley, 2013).  

  

Fluorine is one of the most abundant elements in the geogenic environment and occurs 

ubiquitously in natural water as its ionic form fluoride (Ali et al., 2016). Although fluoride 

could be considered an essential element for human health in low doses, excessive fluoride 

has detrimental effects on health. While the essentiality of fluoride for human health is still 

being debated, its toxicity has now caused considerable concern in many regions where 

fluoride is found in excessive quantities in their drinking water. However, the optimum 

range of fluoride varies within a very narrow margin causing fluoride imbalances, often in 

populations in tropical countries where people consume large quantities of water with 

higher fluoride levels. With most trace elements required by man, food is the principal 

source, but fluoride enters the human body from water (Dissanayake and Chandrajith, 

2019). Most importantly, the essentiality and toxicity of fluoride are divided by a narrow 

line. The WHO recommended drinking water standard for fluoride is 0.5 to 1.5 mg/L (WHO, 

2011).  



Fluoride is an important element for the homeostasis of bone mineral metabolism 

(Dissanayake and Chandrajith, 2007). Due to the chemical similarity of fluoride and 

hydroxyl ions, ingested fluoride is strongly adsorbed  on  mineralized tissues of the body 

which are composed mainly of the mineral hydroxyl apatite [Ca5(PO4)3OH]. Over 90% of 

fluoride in the body is retained in the skeleton and teeth (Ali et al., 2016; Ghosh et al., 

2013). Soft tissues do not generally take up fluoride except by the pineal gland where 

fluoride accumulates in excessive levels (Luke, 2001; Malin et al., 2019). Bones are 

constantly resorbed and re-deposited during a lifetime, and high fluoride can affect the Ca-

turnover rates of bone.  

 

Dental fluorosis occurs as a result of exposure to excess fluorides during the childhood, 

particularly during the age of teeth formation, developing at levels above 1.5 mg/L (Ali et 

al., 2019; WHO, 2011). As a result, enamel becomes harder and discoloured. Although 

dental fluorosis does not affect the tooth as such, noticeable cosmetic effects can appear in 

teeth (Figure 2). Long term and continuous exposure to a high level (>4 mg/L) of fluoride 

leads to hardening of bones, joint pain and limb motor dysfunction known as skeletal 

fluorosis (Dissanayake and Chandrajith, 1999; Zuo et al., 2018). Extreme chronic exposure 

of environmental fluoride could cause crippling fluorosis. Choubisa (2001) noted that 

crippling fluorosis can appear at  exposures  even at about  2.8 mg/L of environmental 

fluoride with an extreme form of skeletal fluorosis known as kyphosis and genu varum, in 

some cases particularly among adults over 45 years of age (Choubisa and Choubisa, 2019). 

Patients with skeletal fluorosis with spinal cord compression were also reported in the dry 

zone of Sri Lanka due to  the regular consumption of high fluoride water for about 20 years 

(Dissanayake, 1996). In addition to health issues of hard tissues, chronic exposure to high 

levels of environmental fluoride could affect  the functions of liver, kidney, heart, lungs, 

brain, thyroid gland, chromosomes, nervous systems development and reproductive 

abilities (Kumari and Kumar, 2011; Nakamoto and Rawls, 2018; Zuo et al., 2018). Chronic 

exposure of fluoride for prolonged periods possibly causes osteosclerosis and end-stage 

renal failure leading to chronic kidney diseases in certain tropical equatorial regions 

(Balasooriya et al., 2019; Chandrajith et al., 2011a; Dissanayake and Chandrajith, 2019; 



Lantz et al., 1987). Harinarayan et al. (2006) have also shown evidence of chronic fluoride 

intoxication associated with renal tubular dysfunction that leads to both bone and kidney 

disease. The importance of fluoride as a geochemical marker for Chronic Kidney Disease 

with unknown etiology (CKDu) in Sri Lanka was discussed by Dissanayake and Chandrajith 

(2017) and Dissanayake and Chandrajith (2019). Damaged kidneys accumulate more 

fluoride, resulting in further damage to kidney, bone and other organs (Connett, 2012). 

  

Health effects of fluoride have been observed even at lower levels than the WHO 

recommended levels, particularly in tropical terrains (Ghosh et al., 2013; Warnakulasuriya 

et al., 1992). It has been documented that the WHO recommended levels for fluoride in 

drinking water are not acceptable to all countries and the incidence of dental fluorosis is 

common even in areas with lower levels of fluoride in water. Therefore, the WHO 

recommended levels of fluoride in drinking water are not appropriate for many tropical 

countries and the optimum levels need to be determined considering the climatic 

conditions, amount of water intake and intake from other sources (WHO, 2011). For 

instance, drinking of tea, which is one of the common beverages in many regions provide 

additional fluoride intake (Chandrajith et al., 2007; Fung et al., 1999). In India, dental and 

skeletal fluorosis have been  reported even when the average drinking water fluoride 

concentration is close to 0.5 mg/L and 0.7 mg/L, respectively, lower than the WHO 

recommended limits of 1.5 and 4.0 mg/L (Ayoob and Gupta, 2006). Both dental and 

skeletal fluorosis were more prevalent and more severe in some regions of Senegal where 

66.5% of children had mild dental fluorosis at the level of 1.0 mg/L fluoride. Dental 

fluorosis had reached 100% over 4.0 mg/L of fluoride in drinking water (Brouwer et al., 

1988). In Sri Lanka, the optimal level of fluoride in groundwater for caries protection has 

been recommended to be  0.6-0.9 mg/L (Warnakulasuriya et al., 1992).  

 

 

 

 



GEOCHEMISTRY OF FLUORIDE  

 

Most importantly, the geochemistry of the F-ion (ionic radius 1.36Å) is similar to that of the 

hydroxyl ion (ionic radius 1.40Å), and therefore, there can be easy exchange between them. 

When groundwater moves in aquifers, the exchange between fluoride and hydroxyl ions 

take place leading to the enrichment of fluoride in groundwater. Minerals such as fluorite, 

apatite, mica, amphiboles are common rock-forming minerals that contain a high amount of 

fluoride in addition to fluorspar, cryolite, fluoroapatite which have fluoride as a major 

constituent (Ali et al., 2016). These minerals are abundant in granitic rocks and high-grade 

metamorphic rocks such as gneisses. Silicate minerals in the earth’s crust usually contain 

fluoride levels as high as 650 mg/kg of fluoride (Adriano, 2001). Prolonged water-rock 

interactions with a higher rate of mineral weathering which is typical to tropical regions, 

lead to leaching of fluoride into the solution and in wet climatic regions intense rainfall, 

washes away fluoride resulting in lower concentrations. On the other hand, the climatic 

effects, notably evaporation due to the prevailing high ambient temperature can enrich the 

fluoride concentrations in the water (Dissanayake, 1996; Mukherjee and Singh, 2020). The 

mobility of fluoride into groundwater is also determined by the groundwater chemistry 

such as pH, HCO3-, and availability of alkali and alkaline earths (Guo et al., 2014; Saxena and 

Ahmed, 2003). A lowering of Ca-activity with increasing Na/Ca ratios occur due to 

excessive evaporation of groundwater under tropical conditions and this leads to the 

increase of fluoride levels (Jacks et al., 2005). However, carbonate rocks act as good sinks 

for fluoride (Dharmagunawardhane and Dissanayake, 1993) and the leachability of fluoride 

from the carbonates is controlled by (a) pH of the draining solutions (b) alkalinity (c) 

dissolved CO2 and the pCO2 in the soil. Clay minerals, Fe(OH)3, Al(OH)3 and fine-grained 

soils adsorb fluoride relatively easily, by displacing hydroxides on the clay surface. Fluoride 

is effectively adsorbed at a pH range of 3-4 and decreases above 6.5 (Savenko, 2001).  

 

 

 



FLUORIDE IN GROUNDWATER OF SRI LANKA  

 

Sri Lanka, a tropical island country with a population of nearly 20 million has well-defined 

wet and dry zones (Figure 3). In many parts of the island, groundwater is the main source 

of potable water, particularly in rural communities of the dry zone of Sri Lanka of which 

over 70 % of communities depend for their domestic needs. The dry zone region comprises 

almost two thirds of the land area and is characterized by lower rainfall (<1000 mm per 

annum) with higher evapotranspiration compared to the wet zone which gets over 2500 

mm/a rainfall.  Restricted rainfall and long dry spells lead to water scarcity in the dry zone 

regions.  In this region, groundwater is mainly extracted from shallow dug wells (<10 m) 

and deep tube wells. In the dry zone regions, dental fluorosis is highly prevalent, and the 

exact population affected by dental fluorosis in Sri Lanka is not well known. In some areas 

in Sri Lanka, dental fluorosis among the population has been recorded as high as 80-98% 

(Nunn et al., 1994; Warnakulasuriya et al., 1992). Therefore, the hydrogeochemistry of 

fluoride in drinking water is of major interest.  

 

Geologically Sri Lanka comprises over 90% meta-sedimentary and meta-volcanic rocks of 

presumed Precambrian age. These rocks are abundant in fluoride-bearing minerals such as 

micas, hornblende, sphene, and apatite. Further, minerals such as fluorite, tourmaline, and 

topaz are also found as accessory minerals in many rock types and these also contribute to 

the general geochemical cycle of fluoride in the geological environment. The fluoride 

contents of the different types of metamorphic rocks of Sri Lanka varied from 95 mg/kg to 

1440 mg/kg (Dharmagunawardhane and Dissanayake, 1993). Groundwater extracted from 

deep wells in charnockitic gneiss, calc-gneiss, biotite gneiss and on granulite rocks showed 

higher fluoride contents compared to wells drilled in quartzite and crystalline limestones 

(Dharmagunawardhane and Dissanayake, 1993). The difference in fluoride levels in aquifer 

rocks is due to different mineral constituents in these rocks and their relative capability of 

releasing fluoride ions into groundwater. Deep groundwater is often extracted from 

fractured crystalline rocks and long residence times enable greater water-rock interaction, 

which could lead to a higher dissolution of fluoride-bearing minerals. High fluoride regions 



in Sri Lanka lie within the low plains, whereas the low fluoride zones are mostly confined 

to the central highlands in the wet zone. High rainfall in the wet zone causes the fluoride to 

leach out from primary and secondary minerals in rocks and soil whereas, in the dry zone, 

evaporation tends to bring soluble ions upwards by capillary action. The slow rate of 

groundwater movement in the low plains also tends to increase the fluoride concentration 

since the contact time of groundwater with a particular geological formation is 

comparatively long (Dissanayake, 1996). Even in groundwater extracted from the same 

aquifer rocks in the dry and wet zones a drastic difference in their fluoride contents has 

been observed. For instance, some deep wells in the wet zone region showed fluoride 

contents, often below 0.5 mg/L, indicating a clear influence of climate and hydrology on the 

fluoride content in groundwater (Dharmagunawardhane and Dissanayake, 1993).  

 

A map showing the distribution of fluoride in groundwater in Sri Lanka had been first 

compiled in the Hydrogeochemical Atlas of Sri Lanka (Dissanayake and Weerasooriya, 

1986) and the fluoride zones of Sri Lanka delineated based on the fluoride content in dug 

well water samples. It was recently updated with data obtained from many shallow and 

deep wells (Figure 3) and which showed that a large part of the landmass of Sri Lanka is 

fluoride-rich (Chandrajith et al., 2012). Over 50% of wells in the dry zone regions have 

fluoride levels higher than 1.0 mg/L while the fluoride content is also higher in deep wells 

compared to the shallow wells (Chandrajith et al., 2012). Raghava Rao et al. (1987) noted 

that high fluoride wells (3-5 mg/L) are mostly associated with charnockites, meta-granites, 

hornblende biotite gneisses and granitic gneisses whereas moderately fluoride-rich wells 

(2-3 mg/L) were recognized in garnet-biotite-sillimanite gneisses. In many regions in the 

North Central Province, the fluoride concentration in groundwater reaches up to 5 mg/L 

with a high incidence of dental fluorosis. In the very early study of Seneviratne et al. 

(1974),  it had been  shown that  the prevalence of dental fluorosis in two dry zone districts 

of Anuradhapura and Polonnaruwa was significant.  They showed that 77.5% and 56.2% of 

the population in these two districts respectively suffer from dental fluorosis in which 

fluoride levels varied from 0.10-4.70 mg/L and 0.50 to 13.1 mg/L in drinking water. Van 

Der Hoek et al. (2003) showed that the prevalence of dental fluorosis among 14 year old 



children were 43.2% in the Udawalawe region where the mean fluoride in groundwater 

was 0.80 mg/L. Warnakulasuriya et al. (1992) investigated 380 children of about 14 years, 

living in 4 geographic areas of Sri Lanka with fluoride at 0.09 mg/L to 8.0 mg/L and 

showed that even in low-fluoride level areas, dental fluorosis is prevalent. A survey carried 

out in the Aluthwewa village, near Galewela showed that 63% of school children are 

affected by dental fluorosis, the mean fluoride content of the groundwater being  1.13 mg/L 

(Ekanayake, 2017).  

 

In recent years, a large number of water quality studies have been carried out particularly 

in the dry zone regions of Sri Lanka due to the wide attention on CKDu. Fluoride is known 

to interact with cellular systems including oxidative stress and modulation of intracellular 

redox homeostasis and some others emphasizing the toxicity of fluoride to human beings 

even at significantly lower doses (Cittanova et al., 1996). The spatial distribution of CKDu in 

Sri Lanka mostly overlaps with the regions of high fluoride groundwater and high water 

hardness (Dissanayake, 2005; Chandrajith et al., 2011a; Chandrajith et al., 2011b). As 

indicated in recent studies, the fluoride content in dry zone metamorphic terrains varied 

from 0.02 mg/L to 8.00 mg/L (table 1). The highest mean fluoride content (2.40 mg/L) was 

recorded in the Madirigiriya area near Polonnaruwa (Jayawardana et al., 2012). However, 

levels were lower in dry zone sedimentary aquifers systems in the north and north-

western part of the island.  For instance, the highest mean fluoride content of 0.55 mg/L 

was recorded in limestone aquifer systems in the Murunkan region (Thilakerathne et al., 

2015).  Groundwater extracted from sandy aquifers in the dry zone also showed much 

lower fluoride levels (<0.45 mg/L). In contrast, fluoride levels in wet zone hard rock 

aquifers are lower than that of the dry zone aquifers.   

  

The other interesting feature of fluoride in groundwater in the hard rock terrain is a drastic 

variation of the concentrations within short distances. A recent comprehensive 

investigation carried out using data obtained from 6107 wells indicated that the 

groundwater fluoride levels in Sri Lanka varied from <0.02 to 12.0 mg/L of  which 28% of 

the wells showed a fluoride level below 0.5 mg/L and 9.7% of wells  had  over 2.0 mg/L 



(Ranasinghe et al., 2019). It was also noted that high fluoride wells (>2 mg/L) were, in 

some cases located within a distance of 500 m from low fluoride wells (<0.5 mg/L). The 

minimum distance observed between a high (>2.0 mg/L) and a low fluoride wells (<0.5 

mg/L) was 42 m and the maximum distance was 9 km (Ranasinghe et al., 2019). Since low 

fluoride wells are often located in the vicinity of high fluoride wells, it is very important 

that the water quality of individual wells be studied for their fluoride contents.   

 

ARSENIC IN GROUNDWATER 

 

Chronic arsenic poisoning caused by drinking water is considered as one of the world’s 

biggest environmental disasters recorded in the last century (Kapaj et al., 2006). Millions of 

people in Bangladesh and West Bengal were severely affected with arsenic related diseases 

(Figure 5). The groundwater extracted from clay or peat layers in the Quaternary 

sediments of the Ganges-Brahmaputra delta consisted of alarmingly high levels of arsenic 

(Annaduzzaman et al., 2018; Bhattacharya et al., 1997; Bhattacharya et al., 2002). Vietnam, 

Taiwan, China, Mexico, Nepal, Chile, Myanmar, Cambodia and many parts of the USA and 

Argentina are among the other countries where high arsenic groundwater had been  

reported (Ahmed et al., 2004; Rahman et al., 2009). It was reported that over 43 million 

people in Bangladesh and West Bengal, in India, consume water which has over 10 μg/L As 

(Chowdhury et al., 2000; Goswami et al., 2020; Rahman et al., 2009). After the outbreak of 

the chronic arsenic position in Bangladesh, the WHO has lowered the maximum allowable 

limit of arsenic from 45 μg/L to 10 μg/L. However, up to 3200 μg/L of arsenic had been 

reported in groundwater in Bangladesh (Bhattacharyya et al., 2003).  

 

Arsenic is a toxic and carcinogenic element present in many rock-forming minerals, mostly 

associated with iron oxides, clays and in particular sulphide minerals (Bhattacharya et al., 

1997).  Groundwater obtained from sedimentary aquifers is particularly characterized by 

higher contents of inorganic As exceeding the WHO recommended values (Ahmed et al., 



2004; Bhattacharya et al., 1997; Currell et al., 2011). Once arsenic gets into groundwater,  it 

subsequently enters the human body causing serious health hazards. Skin lesions including 

skin pigmentation and hyperkeratosis and skin cancer are the most typical symptoms of 

chronic exposure to arsenic. Lung cancer, blackfoot disease, heart, vascular and kidney 

diseases are also among other health issues related to the chronic As poisoning (Cohen et 

al., 2006; Kapaj et al., 2006). However, skin diseases are the most common health effects of 

chronic As poisoning that was reported in people who consume drinking water even with 5 

μg/L of As (Yoshida et al., 2004). 

 

Since arsenic is a metalloid, naturally occurring arsenic occurs in groundwater as oxy-

anions of As(III) or As(V). Compared to organic forms of arsenic such as As-betaine, mono-

methyl or dimethyl arsenate, inorganic arsenic is considered to be more toxic (Sharma and 

Sohn, 2009; Smedley and Kinniburgh, 2013). However, organic forms of arsenic are mostly 

found in food and from among the inorganic forms, the more toxic form As(III), enters the 

body mainly through drinking water. Even As(V) reduces to As(III) after entering  the  cell 

membranes (Jomova et al., 2011).  

 

ARSENIC IN GROUNDWATER IN SRI LANKA  

 

Recent hydrogeochemical investigations indicated that alarmingly high arsenic-containing 

groundwater is not present in the high-grade metamorphic terrains of Sri Lanka 

(Nanayakkara et al., 2019; Wickramarathna et al., 2017). In particular, groundwater in this 

terrain is extracted from the weathered overburden or tensional fractures in the 

metamorphic rocks. In recent years, arsenic in groundwater received wider attention as it 

was proposed as an etiological factor for the occurrence of CKDu in Sri Lanka (Jayasumana 

et al., 2015; Jayatilake et al., 2013).  

 

 



Despite public debates on high arsenic in drinking water and its relationship with the 

CKDu, alarmingly higher concentrations of arsenic in water and soil have not been reported 

in the geological materials in Sri Lanka.  High grade metamorphic rocks of Sri Lanka 

contain exclusively low arsenic contents. Chandrajith et al. (2001) investigated several 

types of high-grade metamorphic rock such as gneisses, charnockites, granulites, which 

contained less than 5 mg/kg of arsenic, indicating the non-availability of arsenic-bearing 

minerals. Soils are other natural materials that can easily be contaminated with arsenic due 

to the application of fertilizer and pesticides. Jayawardana et al. (2014) reported that 

agricultural soils contain relatively higher contents of arsenic (1.0-24 mg/kg) compared to 

non-agricultural soils (1.0-4.0 mg/kg). However, organic rich, uncontaminated forest soils 

collected from the Udawalawe region in the dry zone had 9-29 mg/kg As (Chandrajith et al., 

2009).  A study of 70 paddy soils, collected from different terrains of Sri Lanka contained 

only 0.85 mg/kg of arsenic as  the mean,   while soils from both dry and wet zones showed 

almost similar As levels (Chandrajith et al., 2005).  Soils collected from two CKDu affected 

regions (Medawachchiya and Medirigiriya) in the dry zone of Sri Lanka showed 3.39- 11.9 

mg/kg of arsenic with a mean value of 7.32 mg/kg (Levine et al., 2016). Sediments from a 

dry zone reservoir showed an arsenic content of 0.5 to 24 mg/kg (mean 8.3 mg/Kg) 

(Chandrajith et al., 2008). Although phosphate fertilizer is claimed to be a source of 

inorganic arsenic in cultivated soils (Jayasumana et al., 2015), the reported soil As levels 

were relatively low and negligible.  

 

Inorganic arsenic in groundwater is mostly leached from the aquifer rocks, but 

anthropogenic activities such as an application of phosphate fertilizer can also add arsenic 

into groundwater. The leaching of arsenic from aquifer materials depends on the 

geochemical characteristics of groundwater.  The most common mechanism for the release 

of arsenic is dissolution under reducing conditions (Anawar et al., 2004; Bhattacharya et al., 

1997; Tufano and Fendorf, 2008). Higher organic contents in aquifers could enhance the 

release of As into groundwater (Redman et al., 2002; Wang and Mulligan, 2006). Alkaline 

conditions in groundwater also favour the release of arsenic from aquifer materials 

(Fendorf and Kocar, 2009). Oxidation of sulfide minerals such as arsenopyrite (FeAsS), and 

arsenian pyrite [Fe(SAs)2] also can release arsenic into groundwater (Smedley, 2008).  



 

Although arsenic-contaminated groundwater is not reported particularly in metamorphic 

aquifers, elevated levels were reported in certain parts of the island (table 2).  It has been 

reported that groundwater from Mannar (Figure 5), Mulativu, Puttalam, and Jaffna (Figure 

6) has high arsenic levels  compared to other parts of the island (Amarathunga et al., 2019; 

Bandara et al., 2018; Herath et al., 2018). In all these regions, groundwater is extracted 

from unconfined aquifers in the Holocene sand dunes that are underlain by Miocene 

limestones.  For instance, over 30% of the shallow wells in the Mannar island exceeded the 

WHO recommended limits of arsenic (Bandara et al., 2018)(Figure 4). Groundwater in the 

wet zone region of Sri Lanka has extremely low levels of arsenic, sometimes less than 0.01 

μg/L. In the dry zone regions where CKDu is widespread, arsenic levels are lower than the 

recommended values of the WHO. 

 

 

REMOVAL OF FLUORIDE AND ARSENIC FROM DRINKING WATER  

 

Since there are no beneficial roles of high fluoride and arsenic, reduction of these 

parameters from drinking water is most important. The problem of high fluoride and 

arsenic in drinking water can be observed mostly in rural regions of Sri Lanka. In such 

regions, centralized water supply networks are unavailable and a majority of the 

population depends on groundwater. Due to a low socio-economic background, rural 

communities cannot offer expensive household level or community based water 

purification systems. Therefore, developing a cheap, simple and easily to use, household 

level water filtration system is necessary for the mitigation of the fluoride and arsenic 

problems. Although the arsenic problem is only restricted to small regions, high fluoride 

groundwater is a widespread problem in many dry zone regions of Sri Lanka. The 

consumers are unaware of the presence of excess fluoride or arsenic since both parameters 

do not affect the taste, colour or the smell of water.  

  

 



Many techniques had been introduced for fluoride removal and most methods are based on 

the affinity of fluoride towards hydroxyl group or tendency of adsorbing ferrous and 

aluminium ions. Among these techniques, adsorption processes are used widely and in 

most cases natural geological materials were used as adsorbing agents (Bhatnagar et al., 

2011). In Sri Lanka, several studies had been carried out to introduce village level or 

household level defluoridation methods that can remove fluoride into the safe limits. From 

among these techniques, use of locally available brick and tile chips, kaolinite clay, laterite, 

apatite and sepentinite showed promising results (Jinadasa et al., 1991; Nikagolla et al., 

2013; Padmasiri and Dissanayake, 1995; Weerasooriya et al., 1998). These materials are 

widely available in Sri Lanka and can be used for developing household level 

defluoridators.  Removal of arsenic from contaminated drinking water is also widely 

studied and coagulation, ion exchange and adsorption on to aluminium or iron oxides were 

the technique used for arsenic removal. Naturally occurring red sand in north and 

northwestern coastal area were used effectively to remove both arsenate and arsenite 

(Vithanage et al., 2014). Their studies showed that almost all arsenic species can be 

removed from contaminated in pH range of 4-8.   

 

CONCLUSIONS 

 

This review has attempted to investigate the fluoride and arsenic geochemistry in the 

groundwater of Sri Lanka. As shown in previous studies, excessive fluoride-containing 

groundwater is a major problem in the dry areas of Sri Lanka. In this region, a large 

population suffers from chronic fluoride poisoning, in view of the fact that over 80% of the 

population uses groundwater for drinking purposes. This leads to the condition of dental 

fluorosis and in some cases to skeletal fluorosis until the later stages of symptoms appear. 

Although, geologically, both dry and wet zones of Sri Lanka do not show major differences, 

groundwater fluoride levels are drastically different. This clearly indicates that under semi-

arid conditions, fluoride tends to increase in groundwater due to low precipitation and 

high evaporation. Since high fluoride lead to severe health hazards, introducing household 

level defluoridation techniques are urgently required in high fluoride regions. 

Identification of low fluoride wells in village level also helps to provide drinking water for 



the rural communities, since low fluoride wells are sometimes located in the close vicinity 

of high fluoride wells. Since communities in the dry zone of Sri Lanka ingest excessive 

levels of fluoride through drinking water and also through regular consumption of black 

tea with high fluoride, estimation of the daily intake and associated health hazards need to 

be assessed. Arsenic is not observed as a critical issue in the island, particularly in the 

metamorphic terrain. Excessive levels, however, were recorded in sedimentary aquifers. It 

is obvious that local geological conditions are responsible for the higher contents arsenic in 

the groundwater of Sri Lanka.  
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Figure Captions 

Figure 1:   Regions with fluoride concentration in the groundwater exceeding WHO 
guidelines for drinking water of 1.5 mg/L. 
 
Figure 2: A typical case of dental fluorosis in the dry zone of Sri Lanka 
 
Figure 3: Climatic boundaries and provinces (1- Western; 2-Sabaragamuwa; 3-Sothern; 4- 
Central; 5-Uva; 6-Wayamba; 7-North Central; 8- Eastern and 9- Northern) of Sri Lanka. 
 
Figure 4: Distribution of fluoride in Sri Lanka (after Chandrajith et al., 2012). 
 
Figure 5: Arsenic distribution in Mannar Island, Sri Lanka. 
 
Figure 6: Arsenic distribution in Jaffna Peninsula, Sri Lanka. 
 
   
Table Captions 

Table 1: Fluoride (mg/L) contents reported in different regions of Sri Lanka (N-number of 
samples; LS- Limestone; SD- Sandy aquifers). Details of locations are shown in Figure 3.  

Table 2: Arsenic (μg/L) content in groundwater from different regions of Sri Lanka. 
Location details are shown in figure 3 (N-number of samples; LS- Limestone). 

 

 

 



 

Table 1: Fluoride (mg/L) contents reported in different regions of Sri Lanka (N-number of samples; 

LS- Limestone; SD- Sandy aquifers). Details of locations are shown in Figure 3.  

 

Region N Mean F Range Reference 

Dry Zone-Metamorphic aquifers     

Galewela 44 1.02 0.04-5.00 Ekanayake (2017) 

Girandurukotte  46 0.64  0.02-2.14 Chandrajith et al. (2011b) 

Girandurukotte  52 0.76 0.02-2.50 Wickramarathna et al. (2017) 

Giribawa-Nochchiyagama 170 0.90 <0.02-4.34 Young et al. (2011) 

Huruluwewa 29 0.72 0.02-1.68 Chandrajith et al. (2011a) 

Kakirawa 124 0.57 0.04-3.16 Young et al. (2011) 

Madirigiriya  2.40 0.20-8.00 Jayawardana et al. (2012) 

Malala Oya basin  30 1.51 0.12-3.42 Senarathne et al. (2019) 

Malala Oya basin (surface water) 7 0.54 0.10-1.15 Senarathne et al. (2019) 

Medawachchiya 10 1.42  0.52-4.90 Chandrajith et al. (2011a) 

Medawachchiya/Maderigiriya 91 0.60 0.07-1.05 Levine et al. (2016) 

Monaragala 111 0.89 0.02-2.93 unpublished data 

Murunkan 8 0.41 0.02-0.72 Thilakerathne et al. (2015) 

Nikawewa 52 1.21  0.02-5.30 Chandrajith et al. (2011a) 

Nikawewa 7 1.61 0.43-3.44 Wickramarathna et al. (2017) 

Padaviya 34 0.62  0.02-1.33 Chandrajith et al. (2011a) 

Padaviya - 0.40 0.20-1.00 Jayawardana et al. (2012) 

Talawa - 1.70 0.20-4.00 Jayawardana et al. (2012) 

Udawalawe (Shallow wells) 416 0.57 0.04-3.16 Van Der Hoek et al. (2003) 

Udawalawe (deep wells) 63 0.80 0.18-5.20 Van Der Hoek et al. (2003) 

Udawalawe (surfac water) 27 0.22 0.20-0.87 Van Der Hoek et al. (2003) 

Wilgamuwa 12 1.04 0.15-5.47 Wickramarathna et al. (2017) 

Wellawaya 8 1.05 0.45-2.20 Chandrajith et al. (2011a) 

Dry Zone-Sedimentary aquifers     

Mannar (LS) 35 0.41 0.02-1.90 Bandara et al. (2018) 

Wanathawilluwa basin (LS) 28 0.53 0.06-1.49 Unpublished data 

Jaffna (LS) 35 0.38  0.08-1.54 Chandrajith et al. (2016) 

Murunkan (LS) 21 0.55 0.02-0.84 Thilakerathne et al. (2015) 

Kalpitiya Peninsular (SD) 43 0.45 0.02-1.57 Unpublished data 

Panama (SD) 30 0.44 <0.02-1.30 Chandrajith et al. (2014) 

Wet Zone-Metamorphic aquifers     

Matale 23 0.19 0.10-0.52 Chandrajith et al. (2015) 

Haguranketha 83 0.25 0.05-0.74 Abeywickarama et al. (2016) 

Kandy 30 0.05 0.02-0.06 Wasana et al. (2016) 

Nuwara Eliya  30 0.06 0.03-0.10 Wasana et al. (2016) 

Gampaha 30 0.02 0.01-0.47 Wasana et al. (2016) 

Others      

Hot water Springs 7 3.50 0.12-5.95 Chandrajith et al. (2013) 

 

 

 



Table 2: Arsenic (μg/L) in groundwater from different regions of Sri Lanka. Details of locations are 

shown in figure 3 (N-number of samples; LS- Limestone). 

Region N Mean As Range Reference 

Dry Zone-Metamorphic aquifers     

Girandurukotte 29 0.26 0.06-1.90 Nanayakkara et al. (2019) 

Malala Oya basin 30 0.25 0.07-0.65 Senarathne et al., (2019) 

Girandurukotte 52 0.23 <0.15-0.73 Wickramarathna et al. (2017) 

Wilgamuwa 12 0.36 <0.15-1.64 Wickramarathna et al. (2017) 

Nikawewa 7 0.19 <0.15-0.51 Wickramarathna et al. (2017) 

Dry Zone-Sedimentary aquifers     

Mannar Island (LS) - 7.0 66 (max) Herath et al. (2017) 

Mannar Island (LS) 35 8.38 0.60-34.0 Bandara et al. (2018) 

Tharapuram-Mannar (LS) 8 25.5 6.5-43.8 Amarathunga et al. (2019) 

Jaffna (LS) 35 2.0 0.10-15.1 Chandrajith et al. (2016) 

Mulative  - 3.0 13 (max) Herath et al. (2017) 

Puttalama - 4.0 15 (max) Herath et al. (2017) 

 

 









 







Highlights 

• Fluoride and arsenic dissipation in the groundwater in Sri Lanka is reviewed. 

• Groundwater in dry regions show elevated fluoride levels causing dental and skeletal 

fluorosis 

• Introducing a household level defluoridating method is required for the high fluoride 

regions. 

• Naturally occurring groundwater with high As (>10μg/L) is recorded in sedimentary 

aquifers. 
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